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Executive Summary 
 
 
This is the final report of the research project entitled “Reconfigurable Processing with Bio-
Inspired Embedded Systems On a Chip (SoC) Architectures for Aerospace”.  During this period, 
the project has supported three graduate students (Jacob Allen on the Spiking Neural Network, 
Paul Wierzbicki and Lem Liou on Protein Modeling)  and the Principle Investigator, Dr. Hoda S. 
Abdel-Aty-Zohdy, to study the three technical problems related to bio-inspired  SoC.  
 
The idea of exploring the multidimensional characteristics biocomputing deals with involves a 
multilevel protein logic interaction with hybrid analog and digital systems (bio/digital/analog 
systems). In the protein biocomputing world, all models are nonlinear exponential in nature. These 
nonlinear systems are linearized by boundary limited frequency, time response and dimensional 
ranges. The protein model and its correct development is probably the most difficult aspect for 
biocomputing issues.  These future computing devices will be chemical sensors, fluidic computer 
systems, optical switches, nanoactuators, self-repairing computing systems, nanorobots and 
reusable analog components. Noise reduction techniques for these systems involve spiking neural 
network techniques for data extraction. Reusable Analog Integrated Circuit Components are 
needed for hardware signal processing and for System-on-A-Chip (SoC) Integration. These 
include: Microwave Operational Amplifier(s); Switched Capacitor Filters; and Voltage 
References. During this research period, our analog design efforts have been focused on re-
configurable microwave Op-Amp. A prototype 0.18 CMOS SOI design structure fort RF high-gain 
op-amp was submitted for prototype implementation through the MIT Lincoln lab, FDSOI process. 
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A. Technical Results 

Our research has been on three topics; One is a recursive spiking attractor neural network,  
the second is in protein memory modeling and the third is reconfigurable CMOS analog. 
The following work is based on Jacob Allen’s thesis work at Oakland University and work 
within the Air Force Research Laboratory, Information Directorate. 

 
A.1  Recursive Spiking Attractor Neural Network  

Scientists have long sought to model the brain and unlock its secrets. Understanding 
brain dynamics, how-humans-think, is a holy grail of science that is still a mystery after 
sixty years of diverse research. The body of neural related knowledge spans scientific 
disciplines from psychology to finance. The motivations of neural network research can 
be classified broadly into two categories. In one category, researchers are attempting to 
understand and explain biological neural systems. In the second category, researchers are 
attempting to solve specific problems using techniques inspired by biological systems. 
This research fits squarely in the second category, because it focuses specifically on 
problems related to artificial olfaction. However, the thesis was strongly influenced by 
research that fits in the first category. Physicists attempting to model biological brain 
activity have been aided by improvements in brain imaging technology. Complex models 
of spiking neural networks developed by physicists help to explain certain brain 
dynamics and may eventually provide a mechanism for understanding and duplicating 
animal intelligence at a macroscopic level. For example, in one instance, learning 
phenomena observed in monkey cortexes was roughly duplicated using biologically 
plausible networks[1]. 
 

A.1.1 Neurons in Biology 
Biology is the main source of inspiration for research in neural networks. Millions of years 
old, the parallel structure of the animal brain can still manage tasks that are far beyond the 
capabilities of the world's fastest super computers. Neurons are the main processing units 
of the brain. A biological nerve cell, or neuron, is composed of three main components. 
The axon receives signals from other connected nerve cells, the cell body contains the cell, 
and the dendrites send signals from the neuron to other connected neurons. The synapse is 
the junction where the dendrite of a transmitting neuron connects with the axon of a 
receiving neuron. It is common to refer to the neuron that transmits a signal as pre-
synaptic, and refer to the neuron that receives a signal as post-synaptic. In general, 
biological synapses operate as chemical junctions. When a presynaptic neuron fires, it 
releases positively charged ions from its dendrites.  
 
 



    
 
                                                  Figure A.1.1: Basic Neuron Structure 
 

The ions diffuse to the axon of the post-synaptic neuron and collect over a period of time. 
Once the post-synaptic neuron collects enough ions, a voltage difference accumulates 
between the dendrites and axons, and the neuron becomes a positively charged capacitor. 
Eventually, the charge builds up to a threshold voltage, where-upon the neuron emits an 
electrical spike that moves from the axon to the cell dendrites. This spike is released 
through the dendrites as charged ions, and the cycle continues. The spiking behavior of 
neurons is observable as brain wave patterns that can be studied in biological brains. 
Techniques such as Magnetic Resonance Imaging (MRI) allow researchers to probe and 
record the spiking activity in the brain. In one experiment, Miyashita studied spiking 
patterns in the pre-frontal cortex of the monkey's brain, an area long associated with 
sensory vision processing[1]. Pairs of fractal images were shown to a monkey, one after the 
other, with a delay between. When two images matched, the monkey could press a lever to 
receive a reward for remembering the image. MRI technology monitored the spiking 
behavior of individual nerve cells in the monkey's cortex while it performed this task. A 
pattern emerged in the spike activity. When the monkey was not stimulated by a 
recognition task, the neurons fired at a low background spike rate. However, when the 
monkey recognized certain patterns, isolated neurons would spike at a much faster rate. 
Finally, these neurons maintained a higher spiking rate for a period of time after the 
presentation. 

 
A.1.2 Modeling Brain Activity 
Models of brain activity start with models of neuron activity. Basic neuron models 
developed by biologists and physicist are presented in this section. 
 
A.1.2.1 The LIF Neuron 
The linear integrate and fire (LIF) neuron is the primary element of most biological neural 
network models. At a macroscopic level, the LIF neuron captures the essence of well 
understood biological neuron dynamics. In this model, a neuron has an internal variable, 
V(t), that tracks the voltage potential between the neuron's axon and dendrites. V(t) is 
increased when spikes from external neurons are received at the axons. The amount of 
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change in V(t) for each spike received is defined by a synaptic weight, J. Once V(t) reaches 
a certain threshold, θ v, the neuron depolarizes by emitting a spike, and simultaneously 
resets the internal voltage so that V(t) = 0. For a short period of time after depolarization, 
defined by τ arp, V(t) remains at the 0 voltage level. When the neuron is not receiving 
spikes, V(t) decreases by a linear decay factor, β v. However, V(t) cannot be negative, and 
V(t) cannot decay below 0 volts. 

 
 
 

                                                                  
 

Figure A.1.2: Example of Neuron Depolarization 
 

V (t) gradually increases, until it reaches µ. After depolarization, there is a delay, 
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         Eqn 1.1 
 
I(t) is the influx current which is generated from input spikes, and is discussed in a 
following section. 
 
A.1.2.2 Synapses 
Synaptic connections may be either excitory or inhibitory. Spikes received at the neuron 
via excitory synapses increase V(t), while spikes received via inhibitory synapses decrease 
V(t). Because V(t) cannot be negative, inhibitory spikes cannot drive V(t) below 0 volts. 
There is modest debate between biologists concerning the weights of synaptic connections. 
In one camp the theory is that synaptic connections are either on or off. Experimentation 
indicates that synaptic connections between neurons are all or nothing[5]. Spikes received 
via a depressed synapse contribute Jd to V (t), while spikes received via a potentiated 
synapse contribute Jp. 
 
In the other camp, some biologists argue that there is no evidence to disprove the theory 
that synapse weights vary on a sliding scale of many possible weights. This deep synapse 
theory allows the weights of synapses to be finely adjusted during the learning process. 
Most of the conventional neural network models described in [4] use deep synapses as the 
foundation of their mathematical models. When modeling networks, the choice of binary 
synapses or deep synapses is application specific. Amit shows that biologically plausible 
networks using binary synapses can learn patterns as well as those using deep synapses[6]. 
Additionally, binary synapses help to reduce noise and add to stability in a network. For 
our purposes, binary synapses make the model easier to understand. Further, binary 
synapses seem easier to implement in VLSI than deep synapses.  
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          A.1.3 Recurrent Networks of LIF Neurons 
Begin with a very large network of neurons that are randomly and recurrently 
interconnected. A recurrent spiking neural network is typically composed of three neuron 
populations. First, there is a foreground population of N neurons that are randomly 
interconnected with one another. Second, there is an inhibitory neuron population with Ninh 
neurons that is connected to the foreground population through inhibitory synapses. 
Finally, an external population of Next background neurons always fires with a constant 
mean rate, ν , and is randomly connected to the foreground population. 

 
 
 

Figure A.1.3: Typical Recurrent Neural Network 
Populations of Inhibitory, Excitory, and Foreground neurons are randomly connected by binary 

synapses. 
 

A diagram of a typical network configuration simulated for this research is show in Figure 
A.1.3. Meanfield theory describes the dynamics of randomly interconnected networks with 
sparse connections[2]. The theory essentially calculates the probability that a neuron in the 
network will spike at any given moment, and extends this probability to describe the 
dynamics of the entire network. The result is a Gaussian probability density function that 
describes the influx current to a neuron, I(t) in terms of a mean influx υ i and standard 
deviation β i. Define c as the count of synapses connected to a neuron. When I(t) is 
injected from an external population, the parameters if the Gaussian density function are 
given in [7]. 

 
 
                                                           JNcvi •••=υ                                         Eqn 1.2 
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A solution for v(t), defined as the mean spike rate, is given in terms of  μ i  and σ i [2]. 
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Neurons in the foreground are also affected by feedback within their own population. 
Therefore, v(t), is a function of itself, and contributes to  μ i  and σ i . 

                                                             )()()( tbtvat uu +=μ                                           Eqn 1.5 

                                                                                                    Eqn 1.6 )()()(2 tbtvat σσσ +=
Here, a μ  and aσ  represent the random contribution of v(t), while b μ  and bσ  represent 
the external contribution to μ i  and σ i. Therefore, a recurrent network of neurons will fire 
at a fixed rate v(t), when Equation 1.4 has a solution[2]. Nonlinearities in Equation 1.4 
allow for more than one solution, so the network can be stable at multiple spike rates. In 
the sections that follow, we will discuss how spike rates are used in memory storage. 
 

          A.1.4 Network storage 
Binary patterns, or prototypes, are stored and recalled by the network through spike rates. 
To understand the network recall mechanism, consider a fourth component, stimulus. A 
neuron in the foreground population is stimulated by linearly increasing V(t) with a 
constant value, over time, until the neuron spikes at a rate of vstim spikes per second. Using 
the method described in [2], a prototype pattern of n binary inputs is introduced to the 
network by assigning neurons to each input and stimulating neurons that correspond to `1' 
in the binary pattern. Hereafter, the neurons that are stimulated by a binary prototype will 
be referred to as prototype neurons. When a pattern is recalled by the network, prototype 
neurons continue to spike at a stable rate of von spikes per second, even when the stimulus 
is removed. However, neurons that do not belong to the recognized pattern revert back to 
the mean spike rate voff once the stimulus is removed. This higher-than-background spike 
rate, referred to as selective delay activity, persists until another pattern is presented to the 
network. Mechanically, a pattern is learned in the network when most of the random 
synaptic connections between prototype neurons are potentiated, and most of the 
connections between prototype neurons and non-prototype neurons are depressed. 
Essentially, prototype neurons have non-random connections that allow them to respond to 
a stimulus differently than other neurons. These non-random connections between 
prototype neurons create a localized basin of attraction within the network. 
 

          A.1.5 Learning 
Learning is the process of arranging synaptic connections to form basins of attractions that 
will correspond to learned prototypes. Perhaps learning is the least understood component 
of biological neural networks. Hebb proposed long ago that learning is a function of the 
spike rates in the pre and post synaptic neurons. The general theory is that when two 
neurons are active at the same time, the synaptic strength between them increases. When 
only one of the two neurons is active, the connection strength of the synapse decreases. In a 
system with binary synapses, Hebbian learning can only cause a synapse to become 
potentiated or depressed. Fusi has proposed a new Hebbian learning mechanism compatible 
with bistable recurrent neural networks[2]. In this network, synapses are plastic, which 

Approved for public release; distribution is unlimited.                        Contract F33615-00-D-1726-0005 5



signifies their ability to change state from a potentiated state to a depressed state, and vice 
versa. In this learning model, each synapse has an internal variable, X(t), that tracks the 
spiking activity of the pre and post-synaptic neurons as shown in Figure A.1.5, Figure 
A.1.6, and Figure A.1.7. X(t) varies between 0 and Xmax. When X(t) >θ x, the plastic 
synapse is potentiated. When X(t) < θ x, the plastic synapse is depressed. The internal 
variable X(t) is modified by Hebbian learning dynamics. In Fusi's plastic synapse, Hebbian 
learning is driven by the pre-synaptic spike train. Each time the pre-synaptic neuron 
transmits a spike across the synapse, the internal variable X(t) is updated according to the 
state of V (t) in the post-synaptic neuron. When V (t)post >θ x, X(t) is adjusted upward by a 
small amount, β . If V (t)post in the post-synaptic neuron is below µv when the pre-synaptic 
neuron transmits a spike, then the synaptic variable X(t) is adjusted downward by a small 
amount, ¯. This dynamic effectively implements a stochastic Hebbian learning law. A 
refresh mechanism also exists to preserve the long term steady state values of X(t). When 
the synapse is idle, a dampening/refresh factor causes X(t) to drift towards either 0 or Xmax 
over the long term steady state. When X(t) is greater than θ x, X(t) is linearly adjusted 
upward with respect to time by a factor,  If X(t) is less than θ x, then X(t) is linearly 
adjusted downward by a factor, β . The refresh adjustment is limited by the barriers of 0 
and Xmax; so, in effect, the internal state variable will move towards a steady state of 0 or 
Xmax, and θ x is the dividing point. Therefore, X(t) may be described in terms of a refresh 
component R(t) and a Hebbian component H(t)[8]. 

                                                                            )()()( tHtRdt
tdX +=                           Eqn 1.7 

                                          ))(())(()( xx tXtXtR θβθα −•++−Θ•−=                 Eqn 1.8 

                                                                  (where Θ  = Heaviside function) 
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Cpre(t) represents the number of spikes that are received from the pre-synaptic neuron at 
time t. Vpost(t) represents the voltage of the post-synaptic neuron at time t. Here, a is the 
incremental constant increase in X(t) from a spike received during learning, and b is the 
incremental constant decrease in X(t) from a spike received during learning. X(t) has 
reflecting barriers at X = 0 and X = Xmax so it is held inside the range [0;Xmax]. 

 
A.1.5.1 Learning with Plastic Synapses 
Learning in a network of LIF neurons connected by plastic synapses is a stochastic process, 
because it is based on the probabilities that a synapse will transition from long term 
potentiation (LTP) to long term depression(LTD), or vice versa. The transition probabilities 
are related to the spike rates of the pre-synaptic neuron and the post-synaptic neuron. First, 
it should be noted that the Hebbian learning term, H(t), is dependent upon the probability 
that V(t) > θ v, defined as Qa. Qa is indirectly related to the post-synaptic neuron's spiking 
rate, and it may be calculated directly if the statistics of the input currents are known[2]. 
The probability that a synapse will transition from depressed to potentiated state is referred 
to as PLTP (probability of long term potentiation); and the probability that a synapse will 
transition from a potentiated state to a depressed state is referred to as PLTD (probability of 
long term depression). PLTP and PLTD may be calculated with a Takacs Process that 
describes the spike train and from the numerical solution to a complicated multivariate 
probability distribution function in partial differential equation form[2]. 
Thus, synapses become potentiated or depressed when neurons in the network are 
stimulated at a higher rate than the background spike rate. When exposed to the stimulus of 
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a binary prototype, these changes in synaptic states lead to non-random connections 
between prototype-neurons, and result in attractor formations. The learning process can be 
controlled by adjusting synapse parameters, which will change the transition probabilities 
of different sets of spike frequencies[2]. 
Learning is fast when the transition probabilities are high, but the depth of the memory is 
low because forgetting will be fast as well. Learning is slow if the transition probabilities 
are low, but the memory capacity is larger. It has been shown that a memory based on 
plastic synapses can have optimal storage capacity, and the memory will not overload once 
the capacity is reached[9]. Such memories act like a palimpsest, where a sliding window of 
the most recent memory is maintained and the older memories are slowly forgotten. 
Finally, once an attractor forms, the residual high spiking rate of an excited attractor, von 
will act as a stimulus that increases PLTP , and may lead to an associative memory between 
patterns associated in time. This behavior may begin to explain the Myashita experiments 
where monkeys showed a residual spiking rate in selected neurons after recognizing a 
series of two images[2]. 
 

          A.1.5.2 Learning Statistics 
Before moving on to my own simulations of Fusi's network, a final note about learning 
capacity and speed is in order. The sparseness of a binary stimulus, f, is the ratio of the 
number of neurons stimulated, n, to the number of neurons in the foreground network, N. 
                                           N

nf =                                                       Eqn 1.10 

The network storage capacity is related to f, PLTP , PLTD, and the timing of binary pattern 
presentation. When the inputs to the network are independent of N, the maximum number 
of patterns that can be stored is log(N)[2,6]. However, when the inputs are sparse, meaning 
that f is small, the network capacity improves. The optimal storage capacity occurs when 

N
Nf log~  [2]. 

 
A.1.6 VLSI 
Spiking networks based on LIF neurons and plastic synapses are well suited for analog 
VLSI. They are basically immune to noise introduced in the circuit by the manufacturing 
process and the external environment. Randomness introduced by a factor such as 
temperature enhances the stochastic properties of the network. For example, the plastic 
synapse can be implemented as an analog circuit in VLSI with very little surface area[3]. 
describes how the circuit in Figure A.1.9 was implemented in Standard Analog CMOS 
1:2u technology using about 90u x 70u surface area. In that circuit, the capacitor voltage 
acts as the synapse state variable, X(t), and currents are injected or released from the 
capacitor when the Hebbian circuit is stimulated by a pre-synaptic spike. The refresh 
circuit maintains the steady state values in the synapse, while the dendrite circuit passes 
current to an LIF neuron when a spike is received[8]. This VLSI implementation is 
intriguing, because it implements on-chip learning using an algorithm that is localized to 
each synapse. As in biological networks, learning does not require complicated feedback 
circuitry. 

 
 
 

The network described therein operates on binary patterns similar to those observed in the 
glomeruli of olfaction bulbs. The attractor dynamics model behavior observed in the 
olfactory cortex. The learning dynamics are localized to each synapse, and there is no need 
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for unwieldy feedback circuitry. Finally, this system has already been modeled in VLSI by 
other investigators. 

 

 
Figure A.1.4: Example of Synaptic Transition Probabilities 

 
Biologically plausible synaptic transition model described in [8]. Long term 

potentiation probability varies with pre-synaptic and post-synaptic spike rates, 
while Long term depression probability varies with pre-synaptic and post-synaptic 

spike rates. Note: From Spike-Driven Synaptic Plasticity: Theory, Simulation, 
VLSI Implementation," by Fusi et. al., 1998, Neural Computation, 12. Copyright 
2000 by the Massachusetts Institute of Technology. Reprinted with permission. 

 
 

 
Figure A.1.5: Dynamics of Synapse State Variable X(t) - Low Activity 

Both the pre and post synaptic neurons are firing at the mean background rate. 
X(t) just drifts to long term state of 0 or Xmax depending upon which side of the 

θ x barrier it is on. 
 

 
 

Approved for public release; distribution is unlimited.                        Contract F33615-00-D-1726-0005 8



 
 

Figure A.1.6: Dynamics of Synapse State Variable X(t) - Potentiation 
Both the pre and post-synaptic neurons are firing at a high rate. X(t) increases 

by Hebbian learning term a. The probability that the synapse will transition from 
long term depression to long term potentiation is high. 

 
 
 

 
Figure A.1.7: Dynamics of Synapse State Variable X(t) - Depression 

The pre-synaptic neuron is firing at a high rate but the post synaptic neuron is 
firing at a low rate. X(t) is adjusted downward by Hebbian learning term B. The 
probability that the neuron will transition from long term potentiation to long 

term depression is high. 
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Figure A.1.8: Plastic Synapse Transition Examples 
Plot (a) shows pre-synaptic spikes, V (t), and X(t). First, the synapse transitions 
from depressed state to potentiated state when X(t) crosses threshold, µx. Next, 

the synapse remains depressed, because X(t) decays to 0. (b) First, X(t) falls 
below µx, causing synapse to transition from potentiated state to depressed state. 

Next, X(t) remains at Xmax, and synapse stays potentiated. Note: From 
Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation," by 
Fusi et. al., 1998, Neural Computation, 12. Copyright 2000 by the Massachusetts 

Institute of Technology. Reprinted with permission. 
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Figure A.1.9: Analog VLSI Implementation of Plastic Synapse 
For details, see Fusi [8]. Note: From \Spike-Driven Synaptic Plasticity: Theory, 

Simulation, VLSI Implementation," by Fusi et. al., 1998, Neural Computation, 12. 
Copyright 2000 by the Massachusetts Institute of Technology. Reprinted with 

permission. 
  
A.2.   Simulation of Recurrent Spiking Networks  
 
To better understand Fusi's network, we created two prototype simulators of recurrent spiking 
neural networks with plastic synapses. 
 

A.2.1 SQL Based Recurrent Network Simulator 
 

A  simulator of LIF neurons with plastic synapses was created using SQL Server, which is 
an ideal environment for handling very large sets of data in an optimal fashion. SQL Server 
was also useful for rapid prototyping, because it is a high level language that automatically 
handles things like memory allocation. The simulation routine was created as a stored 
procedure, and tables were used to store simulation data. Data tables proved to be very 
useful for both debugging and for data analysis. SQL server was also much faster than 
similar experiments using Matlab simulations. The simulation speed was further increased 
by using optimization techniques suggested by[10]. Throughout this thesis, this SQL based 
recurrent network simulator will be referenced as the SQL Recurrent Network Simulator 
(SRNS). 
 
The main goals of the SQL Recurrent Network Simulator were: 

• Simulate the random spiking characteristics of an LIF network 
• Simulate very basic attractor formation in the network 

 
The simulated network consisted of 1200 LIF neurons, 300 inhibitory neurons, and a 
background population of neurons firing randomly at a mean rate of 8 spikes per second, as 
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shown in Figure A.1.3. Each neuron received 30 inputs from the inhibitory neurons, 120 
inputs from other LIF neurons, and 120 inputs from outside neurons. Approximately 
144,000 synapses between LIF excitory neurons were plastic, with 90% of these synapses 
starting in a long term depressed state. This network configuration was originally suggested 
as being biologically plausible by Amit [6] and is typically used throughout the literature. 
In the simulation, each neuron received an identification number. Neurons 0-1199 were 
excitory neurons, and neurons 1200-1499 made up the inhibitory population. For the 
purpose of analysis, neurons were collected into groups of 100. Thus, group 0 includes 
neurons 0-99. Group 100 included neurons 100-199, and so forth. The synaptic connections 
between the neurons were randomly selected so that each neuron received 30 inhibitory 
inputs and 240 excitory inputs. 
 

1. The first step involved tuning the network parameters so that the mean spike rate 
would be approximately 4 spikes per second (sps). A rate of 3.2 sps resulted, as 
shown in Figure A.2.1. This met the first objective of random, steady-state spiking. 
2. In step two of the experiment, a subset of the neurons was stimulated for 500ms. 
The network was allowed to run in its steady state for the first 2s. After 2 s, neurons 
0-99 were excited by increasing the mean background firing rate from 4 sps to 150 
sps.  

 
As expected, the probability of synapse transition was higher for these neurons spiking at 
the higher rate, and a percentage of the synaptic connections local to neurons 0-99 changed 
from LTD to LTP. This subpopulation of connected neurons participated in the beginning 
of an attractor formation. Figure A.2.1 shows the mean spiking rates of the network. The 
spiking rate slowly increased until steady-state was reached at t = :5s. The foreground 
excitory neurons (0-1199) showed a mean spike rate of about 3.2 sps, while the inhibitory 
neurons (1200-1499) showed a mean spike rate of about 13 sps. At time t = 2 s, a stimulus 
was applied to neuron group 0-99, and a higher spike rate of 30 sps resulted. It is also 
interesting to observe that the inhibitory neuron spike rate also increased to compensate the 
higher excitory spike rate. The net result was that non-stimulated neurons (100-1199) 
showed a slightly lower spike rate of about 1 sps during the stimulation period. 
The final state of the network after simulation is shown in Figure A.2.2, demonstrating that 
the synaptic connections within the 0-99 block were higher than the average. This indicated 
the beginning of an attractor formation. However, for true attractors to form in the network, 
one would expect LTD transitions in the synaptic connections between neuron group 0-99 
and neurons 100-1199. Here, the opposite was true and an increase in LTP transitions is 
actually observed in Figure A.2.3. This is due to the selected network parameters for this 
simulation. 



 
Figure A.2.1: Spike Rate by Neuron Group and Time Interval Spikes per second (vertical axis) 

sorted by neuron groups of 100 (left axis) and .5 
second time intervals. (right axis). Neurons 1-1199 are excitory neurons and spike 
with rate of about 4 sps. Neurons 1200-1499 are inhibitory neurons and spike with 

a mean rate of about 12 sps. Stimulus was applied to excitory neurons 1-99 at 
time 2 s increasing the spike rate to 29 sps. 
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Figure A.2.2: Synapse Potentiation 

Resulting potentiated synapses after stimulus. As expected, connections between stimulated 
neurons in group 1-99 have the most potentiated synapses after stimulus. Potentiated connections 
are also increased for synapses having neurons 1-99 as pre-synaptic neurons. 
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Figure A.2.3: Total Synaptic Transitions Due to Stimulus. 

Synaptic transitions between stimulus time 0 seconds to time 2.5 seconds, for synapses leading 
from neuron group zero to the pre-synaptic groups 0 to 1100. The stimulated pre-synaptic group 0 

showed a larger than average number of transitions 
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The SQL Recurrent Network Simulator was able to simulate large populations of neurons 
and demonstrate basic attractor formation. However, the simulator was slow. It took about 
30 minutes to simulate one second of network activity on a 1.4 Ghz Pentium system with 
256 Mb of memory. Further, there was no user interface, and the stored procedure code 
grew large and unwieldy. 
 

          A.2.2 Object Oriented Recurrent Network Simulator 
A second, object oriented recurrent network simulator was created in using C# to overcome 
the weaknesses of first the SQL recurrent network simulator. A class hierarchy of the 
simulator is displayed in Figure A.2.4. Design goals of the second simulator included: 

• Fast Execution 
• Flexible Configuration 
•  Expandable to handle new Neuron and Synapse Models 
•  Modular Components 
• Continuous time simulation and Discrete time simulation 



 
Figure A.2.4: Class Hierarchy of Spiking Network 

 
This tree diagram shows the object oriented structure of the Object Oriented Recurrent 
Network Simulator. The simulator models analog and digital systems, which may be 
interchanged. New models of neurons and new learning rules for synapses can easily be 
created and tested by deriving objects from the base classes. 
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The object oriented design allows new models of synapses and neurons to be quickly 
developed for simulation by deriving them from base classes. There is no specified limit to 
the number of neuron populations, or the combinations of interconnections. For example, 
an analog neuron population may defined using floating point logic, and then 
interconnected using digital synapses that use integer logic. This object oriented approach 
allows a simulated network to combine new neuron models with old neuron models. 
Events such as synapse transitions and neuron spikes are logged in a common format. Data 
may be logged to a SQL Server database, stored in a text file, or posted to a message queue. 
C# was chosen for the simulation language because it is a rapid prototyping language with 
the power and elegance of C++[11]. The just-in-time compiler of C# is typically as fast, if 
not faster, than compiled C++ code, because the just-in-time compilation can perform on-
the-fly local optimizations. C# has an extensive class library including items like sorted 
arrays to make development quick and easy. Additionally, the managed code environment 
enforced by C# aided in rapid development, because common errors like memory leaks are 
impossible. 
The simulation time of the Object Oriented Recurrent Network Simulator significantly 
improved over the SQL Recurrent Network Simulator. The simulator could have been 
further improved, because the optimizations suggested by Reutimann in [7] were not 
implemented. Simulation speed varies directly with the number of events in the system, so 
networks with low spike rates simulate faster than networks with high spike rates. On a 1 
MHz system with 256 Mb of memory, a simple network of 1500 neurons with a mean 
spike rate of 32 sps uses about 1.2 minutes per second of simulation. More complex 
networks with many synaptic transitions use up to 2.6 minutes per second simulated. The 
Object Oriented Recurrent Network Simulator has a very minimal Graphical User Interface 
(GUI). The original intention was to develop the simulator, and then add a GUI as time 
permits. However, the simulator was abandoned before any significant GUI was created. 
Network parameters are configured directly in code through `test' network objects. Figure 
A.2.2 is a truncated example of how a network is configured in code. 
 
 
A.2.3 Experimentation 
The Object Oriented Recurrent Network Simulator was first used to test spike-rate stability 
points. An excel spreadsheet was created to calculate the stabile spike rate, º(t), for a set of 
network parameters using Equation 1.4. The Object Oriented Recurrent Network Simulator 
was able to reproduce the results obtained by the SQL Recurrent Network Simulator. It was 
also able to simulate excitory only networks and functioned according to the theory of 
Equation 1.4. However, the simulation was less successful using stochastic learning to 
create bi-stable basins of attraction. After a long period of experimentation, we were unable 
to balance spike rates and potentiation probabilities in a manner that would successfully 
create a functional memory. Figure A.2.6 shows representative results, and emphasizes the 
unstable spike rates. 
Experiments with the Object Oriented Recurrent Network Simulator were not a total 
failure. Although the simulator was eventually abandoned, it still provided the foundation 
for the final implementation. Two simulators were created to test the dynamics of recurrent 
spiking networks and their ability to store and recall binary patterns. The SQL Recurrent 
Network Simulator used SQL server to test the learning algorithm described in Fusi's PhD 
dissertation[2]. This simulation was successful in demonstrating attractor formation. A 
second Object Oriented Recurrent Network Simulator was designed using object oriented 
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techniques that allowed learning rules and neuron logic to be easily modified and tested. 
The second simulator was used to test pattern storage and recall.  
 

 
network = new Network(); 
inhibitNeurons = new LIFNeuronPopulation("Inhibit",network); 
exciteNeurons = new LIFNeuronPopulation("Excite",network); 
inhibitToInhibitSynapses = new ConstantSynapsePopulation 
("IISYnapses",network,inhibitNeurons,inhibitNeurons); 
inhibitToExciteSynapses = new ConstantSynapsePopulation 
("IESynapses",network, inhibitNeurons,exciteNeurons); 
exciteToInhibitSynapses = new ConstantSynapsePopulation 
("EISynapses",network,exciteNeurons,inhibitNeurons); 
exciteToExciteSynapses = new PlasticSynapsePopulation 
("EESynapses",network,exciteNeurons,exciteNeurons); 
exciteNeurons.NeuronCount = 1200; 
exciteNeurons.BackgroundSpikeFactor = 4 * 120; 
exciteNeurons.BackgroundSpikeWeight = 25.6; 
exciteNeurons.DecayRate = 1024; 
exciteNeurons.DepolorizationDelay = .03; 
exciteNeurons.InitialVoltageMu = 0; 
exciteNeurons.InitialVoltageSigma = 0; 
exciteNeurons.Threshold = 1024; 
exciteToExciteSynapses.ClockPeriod = 0; 
exciteToExciteSynapses.SynapsesPerPostNeuron = 108; 
exciteToExciteSynapses.SynapseWeightMuPotentiated = 100; 
exciteToExciteSynapses.SynapseWeightMuDepressed = 15; 
exciteToExciteSynapses.PercentPotentiated = .1; 
exciteToExciteSynapses.SynapseWeightSigma = 0; 

 
Figure A.2.5: Truncated Code to Configure a Network 

 
 

This truncated code snippet demonstrates how a network is configured using object 
oriented code in the Object Oriented Recurrent Network Simulator. The excitory and 
inhibitory neuron populations are configured, followed by some synapse populations. 
Finally, the network is run for 5 s. Note: Not all of the synapse populations are shown here. 

 
 
 
 
 
 



 
Figure A.2.6: Failed Recurrent Network Test 

A stimulus is applied to neurons 1-99 at time 10-30 s. The stimulus is again 
applied at 50 s. Instead of forming an attractor, the spike rates are unstable and 

increase indefinitely. 
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B.1  Protein Memory Modeling 
 

B.1.1. Protein Measurements 
In the summer at the Information Directorate, our in-house graduate student, Lem Liou, 
started work on measurements for protein memory. The idea of using protein as a material 
for memory storage is made possible by the fact that proteins exist in different 
conformations, or states, and that in certain proteins these states can be induced by light. 
Information can be stored in an array of protein clusters arranged and suspended within an 
optically transparent polymer matrix. By directing light at specific coordinates of the 
matrix, specific clusters can be switched from “state 1” to “state 2,” or better yet is to say, 
“bit 0” to “bit 1.” Bacteriorhodopsin protein has been studied in depth for its potential as a 
memory storage material, and so far study results are favorable. Experiments were done to 
confirm the viability of bR as a possible candidate for a novel memory device. More 
experiments must be done to measure a write efficiency that takes into account diffusive 
mechanical protein interactions. These measurements must be compared to the theoretical 
model and discrepancies must be accounted for. An initial model setup was created in 
JAVA language. This program must be completed with the proper mathematical 
implementations and eventually built into a full 3-D model. The program is adaptable to 
add in new variables as new influences to the model behavior are discovered. If necessary, 
more protein interactions other than mechanical forces can be added into the program. 
Another key implementation that must eventually be made for the model is the specific 
time dependent intermediate states of the write and page processes. As new strains of bR 
are being developed, the cumulative change in the intermediate state properties 
(intermediate state yields) is what causes the write-efficiency to change. As a future 
obstacle, these and other implementations to the model should be made. 
B.1.2. Background: 
The idea of using protein as a material for memory storage is made possible by the fact that 
proteins exist in different conformations, or states, and that in certain proteins these states 
can be induced by light. Information can be stored in an array of protein clusters arranged 
and suspended within an optically transparent polymer matrix [1, 2, 3]. By directing light at 
specific coordinates of the matrix, specific clusters can be switched from “state 1” to “state 
2,” or better yet is to say, “bit 0” to “bit 1.” Bacteriorhodopsin protein has been studied in 
depth for its potential as a memory-storage material, and so far study results are favorable. 
 
Bacteriorhodopsin (bR) is a ~26kDa transmembrane protein found in the plasma membrane 
of Halobacterium salinarium [4, 5]. The ~250 monomer residues of bR arrange into seven 
alpha-helices, folded into a barrel of ~400x400x500 nm dimensions [15]. The 
photosensitive nature of bR is due to a retinal group being attached to Lys216 [6]. When 
the chromophore retinal absorbs red light, an all-trans to 13-cis isomerization reaction 
occurs. The 14Carbon-15Carbon bond angle rotates approximately 120 degrees and the 7th 
alpha-helix (attached to retinal via Lys216) shifts position consequently (figure B.1.1). The 
13-cis conformation of bR represents one of five intermediates that occur in the primary (or 
natural) photocycle of bR which activates upon chromophore contact with ~635nm light. In 
the primary photocycle (figure B.1.2), ground state bR cycles through the intermediates—
K, L, M, N, and sometimes O—then ~8 ms later spontaneously falls back to the original bR 
resting state. Unfortunately, more often than not, the N state transforms directly back into 
the original bR state. The total photocycle takes approximately 10 ms. A secondary or 
branched photocycle (figure B.1.1) occurs when the O-intermediate is activated by a 



second exposure to ~690nm light. The branched photocycle consists of the O-intermediate 
transforming into the P intermediate, which eventually spontaneously transforms into a 
relatively stable Q-state [1, 2, 3, 7, 8]. The O to P transformation consists of an all-trans to 
9-cis isomerization reaction of the retinal group, and the P to Q transformation consists of 
the covalent detachment of the retinal from Lys216. The Q-state is a viable state to be 
assigned bit 1, while the ground state bR is assigned bit 0. A bit 1 to bit 0 transformation 
can be achieved only by exposure to high-energy blue light. 
 

 

Figure B.1.1 showing a structural representation of two of bR’s conformations. When an 
isomerization reaction occurs on the retinal, the whole 7th helix shifts position. Therefore a 

mechanical movement and a structural change is associated with state changing. Pictures taken 
from [9] and [10]. 

B.1.3 Response Times 
The response time of bR to light is currently known to be in the order of picoseconds, 
which has been seen with femtosecond-resolved infrared spectroscopy [11]. The initial 
isomerization takes place within .5 picoseconds, and after about 3 more picoseconds the K 
state is reached [11, 8].  The transition from K to L is ~1 microsecond, L to M is ~50 
microseconds, M to N is ~1ms, N to O is ~2ms, and O to bR is ~8ms. The relatively slow 
transition from O back to bR allows time for a second write laser to induce O to P. I can’t 
find any O to P transition rates in the literature. The total time for the normal photocycle is 
~10ms. It takes ~2ms to write. 
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Figure B.1.2 showing the primary (states bR to K, L, M, N, O) and branched (states O to P to 
Q) photocycles. For advantages of using the P/Q states as the bit 1 state, see [1]. Figure 

adapted from [12] and [1]. 
 

B.1.4 Interface of bR to Bio-memory Devices 
 
 Extensive research in the development of bR as a memory-storage device has been 
and is still being done at Syracuse University [1, 2, 3]. Other researchers of bR-memory 
devices have looked into using the M-state [12] and K-state [referenced in 1] as the bit 1 
state, while other groups such as Syracuse and their collaborators are working on a device 
using the P and Q states as the bit 1. Their previous research efforts will be used to explain 
the viability and practical approaches to using bR to store information.  

 
The plasma membrane of Halobacterium salinarium, which contains ~80 to 90% 

wt bR [4, 5], is extracted, purified, sonicated to fragments (to be distinguished from 
clusters), and then homogeneously suspended into a polymer hydrogel. The hydrogel is 
placed in a clear 1x1x3cm cuvette (figure B.1.3). To specify a 3-dimensional coordinate 
requires two precise laser beams that intersect at the desired coordinate. One laser must 
have capability to focus in two dimensions, while the other laser has the capability to focus 
in the 3rd dimension. The first laser, ~635nm, activates the primary photocycle across a 
whole row of bR-clusters. The activation of the primary photocycle has been coined 
“paging.” A second laser of ~690nm must be shined ~2ms after the first laser, and must be 
directed down a column which intersects the paged row at the desired coordinate. The 
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desired coordinate’s cluster gets hit with the ~690nm light precisely while it is in the O-
state and transforms into the P and Q states, completing the write process. The size of the 
bit transformed cluster, also known as a voxel, is determined by the size of the paging laser 
and writing lasers’ intersection. The paged clusters that were not met by a second ~690nm 
light reverts back to ground state bit 0, while nothing happens to the column of ground 
state clusters exposed to the ~690nm light. The read process can be achieved based on 
absorption properties and yield of the O-state and P/Q states [3]. The erase process is 
achieved by exposure to blue light. 
 

 
Figure B.1.3 showing the write process for a bR memory gel inside a 1x1x3 cm cuvette and an enlarged view of 
a cross-section. See text for details. Note the distinction between a voxel (cluster) and a fragment. 

 
B.1.5 Current Status of Bacteriorhodopsin Memory Application 

 
 Currently, according to the work from previous contract with Syracuse University, 
the development of an electronic and computer interface for volumetric memory device 
prototypes is somewhat complete and fully possible. Implementation of a Fourier-based 
optical system and implementation of multiplexing techniques, including polarization and 
gray-scale are not yet realistic because the actual bR memory device has not yet been 
perfected. One of the biggest obstacles in perfecting the memory-storage device is 
overcoming the poor quantum efficiency of the write process and to improve reliable state-
changing of bR.  
 
 In Syracuse’s recent experiments it was noted that .21% of a paged bR cluster 
cycles through the O intermediate, while theoretically it is possible to get a 1.5% yield of 
O-state [3]. Furthermore, 6.4% of the O state bR, theoretically, convert into the P and Q 
states. The quantum efficiency of the branched photocycle in the currently developed 
prototype is anywhere between 1E-4 to 1E-2, while the quantum efficiency of the primary 
photocycle of bR in nature is ~.67 [5]. Such low quantum efficiency in the memory device 
increases the likelihood that a read error will occur. When a cluster of bR is paged and then 
written to, a significant amount of the bR in that cluster must switch states in order to 
distinguish its bit 1 nature from a nearby unwritten bit 0 cluster. The read process must be 
able to distinguish a bit 0 cluster from a bit 1 cluster based on the different absorption 
properties of each state (figure B.1.3), as well as the state change efficiency within each 
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cluster. Using the O-state to read, as described in [1], helps reduce read-errors because the 
O-absorption is further away from P and Q absorption than bR absorption (see figure 
B.1.3). But with still such low O to P quantum efficiency, high intensity beams are 
necessary to transform a cluster above the read threshold. Such high intensity, however, 
preclude potential aspects such as multiplexing. High intensity also limits the precision of 
writing because the voxel size is not small enough. Also described below are speculations 
of other effects high intensity may have on the memory device’s writing efficiency. 

 
The photocyclic properties of the memory storage device must be improved before 

it can compete with current commercially available memory storage systems. Current 
attempts at improving quantum efficiencies1 are underway at several institutions in a 
somewhat collaborative effort. Genetic engineering of hopeful new bR with more favorable 
branched photocycle properties is being attempted at University of Connecticut. Chemical 
modification of the surrounding chemical environment and polymer hydrogel 
improvements is underway at Carleton University. Other considerations such as optimizing 
the laser beam characteristics can be studied too. Based on the new problems and 
challenges facing the development of a competitive bR memory device, in-house 
experiments on Syracuse-designed memory hydrogels will be done, and a model will be 
developed to study the energetic aspects of the writing efficiency. 
 
 
B.2 Approach: 
A model of the protein memory device will be created/refined in the Java programming 
language (selection of Java is primarily due to the high interoperability of the language to 
multiple end user operating systems). The basic layout of the Java program is shown in 
figure B.2.1. A data flow diagram is shown in figure B.2.2. The layout represents a large 
fragment group (fragments being the smallest continuous bR protein units which are then 
evenly distributed through a non-reactive gel matrix) which is 12x12 in size. In this model 
the cluster (or voxel, the 3-D area affected by the read/write optical beams) is smaller or 
equal to the size of the fragment. The items in the 2-D array represent photoactive 
molecules of the memory device (bR in our situation). The user can enter values into a text 
box and set the value of an independent variable condition to the text box value with the 
drop down menu. For instance, beam area can be set at any value up to 12 molecules 
(which would set voxel size or the effective diffusion-constrained area to 12x12 molecules 
large). 
 
 

 
1 Quantum Efficiency is defined as the ratio between the photons used for a chemical reaction and the total absorbed 
photons. Quantum Efficiency is sometimes interchanged with the term Quantum Yield. 



 

Figure  B.2.1.   Shows the layout of the JAVA graphical user interface (GUI) program. The pop up 
GUI shown is the simulation mode 

 

 

Figure B.2.2. Shows a (proposed) data flow diagram for the JAVA program. 
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In simulation mode, the diffusion equation will be applied to the system based on the 
inputted quantum yields and laser beam energies. The program will calculate the total 
mechanical energy reaching each bR molecule in the voxel due to mechanical diffusion of 
energy from each photoexcited bR molecule. The diffused energy will be accounted for in 
the energy barrier of the writing operation. Also in the simulation mode, values from 
dependent variables can be listed in correspondence to varying manipulated variables. 
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Dependent lists can show values such as the energy reaching a specific bR in the voxel 
(figure B.2.3). In addition, the resulting write-efficiencies obtained will be graphically 
represented in the 2-D array showing which bR molecules are likely to have undergone 
conformation upon exposure to the write laser (figure B.2.4). The bR that get conformed 
will be mathematically based on the beam area and relative coordinates chosen in the text 
boxes, and depend on the diffusion energy involved. The “simulate” JButton needs to call a 
solving program that will solve the diffusion equation for each bR array member within the 
beam area (set in the main layout) and return each value to a corresponding “energy 
barrier” array variable. For each bR molecule in the coordinate array, the “conform” 
JButton will evaluate the following statement for each bR molecule within the set voxel 
perimeter: 
 
IF (write barrier) + Σ(energy from diffusion equation)/(Avogadro’s number) < 
(intensity/1000)*(duration/1000), THEN bit conformation = true 
 
 A major goal of the modeling/simulation work is to gain additional insight into the 
write efficiencies of the bR material (a main issue preventing widespread adoption of 
optical protein memory remains low write efficiencies, currently on the order of 2-4%). By 
taking protein interactions into account (based on mechanical energy diffusions) we seek to 
discover new methods of protein-optimization whether by new methods of sample 
preparation, modifications to the optical recording device, or in the directed evolution of 
the protein itself in order to perfect the protein memory device.  
 Building on work previously conducted at Syracuse University (under AFRL 
contract), the in-house effort also seeks to explore new methods and in particular new 
materials that may be viable substitutes for the bR protein technology (while bR protein 
optimization research via genetic engineering is ongoing at multiple research sites, it 
remains a bottleneck of the commercial viability of bR as a memory material). New 
macromolecules have recently been identified for prospective optical memory device 
applications and a portion of the effort will be spent investigating their potential as memory 
substrates and as participants in bio-inspired cognitive computing paradigms. 
 
 

 
      
 
 
 
 



 

Figure B.2.3 shows how the simulation box will function. This program does not yet have 
mathematical implementations and therefore does not yet have the capability to calculate the 

hypothetical values seen in this box. The energy barrier values will be converted from kcal/mol to 
joules/atom before computation begins, for dimensional compatibility. 

 

 

Figure B.2.4 shows how the 2-D molecule layout will function. 
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B.2.1 Protein Modeling 
The emphasis is on developing mathematical models suitable for computer simulation. A 
system of proteins arranged into a one–dimensional matrix, containing ion particles has 
been developed. The proteins are considered fixed in their positions together with their 
surrounding membranes. The ions move between proteins and may also be 
captured/released by proteins. The presently modeled mechanisms of ion movement are 
diffusion and active membrane transport; additional mechanisms are under investigation. 

 
 

B.2.2 Two dimensional protein matrix model 
The matrix model, builds upon a  model of a  two – dimensional system of proteins. Two 
physical forces (potential difference and diffusion) are developed and employed to induce 
time – dependent changes in two fluxes (electric current and ion mass density) flowing 
within a matrix of proteins with fixed positions. The forces and fluxes are coupled using 
the Onsager Reciprocal Relation. 
 
From a physical viewpoint, each protein is viewed as an electrode with a time – varying 
potential; ions and current then flow between neighboring electrodes, so that ion 
concentration also changes with time.  
 
From a “logic circuit” viewpoint, as defined and modeled by Hennie [20], each protein is 
viewed as logical cell in an array of identical cells, each receiving primary input signals 
from the outside world and intercellular inputs from nearest neighbors. 

 
The protein matrix is a fixed, regular two dimensional array of individual proteins, i.e. a is 
‘a’ constant at all times: 

 
 +x 

+y 

 
 
 ith protein Pi ≡ Pi(ix, iy) 
 
 
 
 
 
 
 

a 
 
 

a 
 

The forces and fluxes are defined as follows: 
 

    J1 ≡ current, i.e. the usual conduction of electrons, 
    J2 ≡ ion flux, i.e. the motion of mass particles, 
   X1 ≡ electromotive force, i.e. a voltage difference, 
   X2 ≡ concentration gradient of ions. 
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Following the paper by Onsager [16], the coupled reciprocal relations are: 
 

              X1 = R11J1  + R12J2  
                      X2 = R21J1  + R22J2                     (1) 

 
Here R11 is the usual resistance of Ohm’s law, and R22 is a diffusion coefficient. The above 
equations can be rewritten in matrix form: 

 
 
                                        JRX

vv
=    ,     or         XRJ

vv 1−=  
 
with 

 1−R  =    ≡  ⎥
⎦

⎤
⎢
⎣

⎡

2221

1211

LL
LL

L         i.e. 

 
 
       J1 = L11X1  + L12X2  
                                        J2 = L21X1  + L22X2    (2) 
             
          Physical interpretation of each term of (2). 

 
L11X1 .  L11 is conductance, X1  is a voltage drop ⇒ this term is the usual Ohm’s Law for 
conduction of electric current by electrons. The units are [amp] = [mho][V]. 
 

L12X2 .   
  

   Pj

 +     + 
 
  +     +   + 
       + 
low conc. of inter- 
protein  ions 

 +  +  + +  +  ++    e-

      +++++ 
  +     +   ++++ 
    +   ++++++ 
high conc. of inter-
protein  ions 

 
   Pi  

 
 
 
 

The nonzero concentration gradient (X2 ≠ 0) induces a flow of electrons. If the units of X2 
are [mass (unit area)-1  (unit distance)-1] then the units of L12  are [amp area distance (unit 
mass)-1]. 

 
L21X1 .   
     Pi    Pj +     + 

 
  +     +   + 
       + 
low conc. of inter- 
protein  ions 

 +  +  + +  +  ++ 
      +++++ 
  +     +   ++++ 
    +   ++++++ 
high conc. of inter- 

   + 

   Vi 
   Vj 

protein  ions 

 
 
 
 
 
 

 
 
Potential difference X1 ≡ Vi – Vj  between Pi and Pj , which act as electrodes, induces flow 
of interprotein ions. In the case pictured here, X1 causes a flow against the concentration 
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gradient. The units of J2 are [mass (unit time)-1], the units of X1 are [V] ⇒ the units of L21 
are [mass (unit time)-1(unit voltage)-1]. (The electric current caused by this flow of ions is 
nq J2 , q = unit charge, n = # of charges per ion). 
 
L22X2 . This term describes the usual flow of particulate matter under the influence of a 
concentration gradient. The units work out as [mass (unit time)-1] = [area distance (unit 
time)-1] [mass (unit area)-1 (unit distance)-1]. 
 

            Modeling the “forces” X1,2.
At present, only nearest neighbor interactions are considered. For protein Pi : 
 

 

Approved for public stribution is unlimited.                        Contract 31 release; di  F33615-00-D-1726-0005 

 
 
 
 
 
             Pi  (ix , iy ) 

+y 

+x 

 P (ix -1, iy  -1)  P  (ix +1, iy  -1) 

 P  (ix +1, iy ) 

 P  (ix +1, iy  +1) 

 a 

a

 
 
 
 
 
 

To model the potential difference X1 between two neighboring proteins, first model the 
charge density ρ around each protein. For example, for protein Pi : 

 
 ρi ≡  ρi(ISi , PRIi , ri(θ), r, θ)     [charge (unit area)-1 ] 
 

where 
 
ISi       ≡ present internal state of Pi (e.g. one state of the bacteriorhodopsin photocycle), 
PRIi  ≡ primary input to Pi (e.g. photons from the outside world), 
ri(θ)  ≡ bounding curve surrounding the charge distribution ρi of Pi , 
(r, θ) ≡ polar coordinate points on the interior of ri(θ),  0 < r < ri  ,  0 < θ < 2π .  
 
ISi and PRIi can affect the distribution ρi since conformational changes and external inputs 
may have effects on the spatial configuration of the charges held by Pi . E.g. a change in a 
protein’s tertiary structure may shield or expose some of its charge; a photon striking Pi 
may induce changes in structure or affect charge distribution. ρi is also affected by ions that 
Pi may capture or release. 
 
 
 
 
 
 
 

 
   ri (θ)    rj (θ)  
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The potentials at the points Pi,j   (nominally at the “centers” of proteins Pi,j) are formally calculated as: 
 

  ∫∫=
jir

ji
ji rdrd

r
r

V
,

0

,
2

0
,

),(
θ

θρπ

 

 
 
Then: 
 
           for the potential difference between Pi and Pj  . 

  (r,θ) 

   Pi (ix , iy ) Pj (ix , iy +1) 

ρi  = fISi,PRIi(r, θ) 

ρj= fISj,PRIj(r, θ) 

(r,θ) 

X1 = Vi - Vj

 
 

To model the force X2 , which is driven by the ion concentration gradient, the mass density 
of ions, μ(x,y), must first be modeled: 
 

 +x 
 
 
    +y point (x,y) has mass 

density μ(x,y) 
 
 
 
 
  Pi  
 
 
 
 
 
 

 
If point (x,y) falls within the boundary ri(θ) of some Pi , then the mass density of ions  
μ(x,y) is considered “captured” by Pi , and μ can contribute a charge density of up to 
nqμ(x,y) to the total charge density ρi(x,y) at point (x,y); q is the fundamental charge and n 
is the number of such charges per ion. If (x,y) does not fall within any ri(θ), then ions are 
free to flow through this point, under the influences of  X1 , X2 . X1 is modeled above. 
 
X2  is modeled as follows. The concentration gradient of ions is given by  grad μ, so that 
the ion flux due to this gradient is Dm grad μ, where Dm is the mass diffusion coefficient. 
Dm grad μ is the quantity L22X2 of equation (2), with L22 as Dm and X2  as grad μ. 
 
Since the ions can move, μ is clearly also a function of time. The “full space – time” 
behavior of  μ can be modeled using Fick’s Second Law of Diffusion: 

 



                                                          )( μμ
∇•∇=

∂
∂

mD
t

 

 
Since, as discussed above, μ can contribute to ρ, ρ is also a function of time. A changing ρ 
may induce a change in the protein’s internal state IS, causing further changes in ρ. A 
change in ρ may cause a change in the protein’s potential, so that X1 is generally also a 
function of time; clearly X2 varies with time, and may be affected by a protein’s ability to 
capture or release ions at any given instant. Thus the coupled equations (2) are time 
dependent, and define an evolving system under the influence of two forces X1,2 and two 
“messengers” J1,2 .  One or more equilibrium states must be defined for the protein matrix, 
i.e. in the absence of all external inputs (the PRI primary inputs of the model) J1 = J2  = 0, 
that is, no messages are being exchanged between any proteins. The subsequent application 
of PRI signals (e.g. photons) causes a disturbance in the system, which undergoes a series 
of state changes in space and time, ostensibly reaching equilibrium (the same or a different 
one)again.
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C.1 Analog Re-Configurable Computational/Processing Units: 
Reusable Analog Integrated Circuit Components are needed for hardware signal processing 
and for System-on-A-Chip (SoC) Integration. These include: Microwave Operational 
Amplifier(s); Switched Capacitor Filters; and Voltage References. During this research 
period, our efforts have been focused on re-configurable microwave Op-Amp. A prototype 
0.18 CMOS SOI design structure fort RF high-gain op-amp was submitted for prototype 
implementation through the MIT Lincoln lab, FDSOI process. The design was submitted, 
but has not been received by Oakland University to test results as of the date of the final 
report. 

 

 
 
                      Figure C.1 High-gain RF Op-Amp on 0.18 um FDSOI CMOS Processed at the MIT-LL 
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ABSTRACT 
Stop thinking that the universe is best described by Boolean order operations, consider the world of biocomputing. 
The idea in exploring the multidimensional characteristics of biocomputing systems involves multilevel protein logic 
interaction with hybrid digital systems (bio/digital/analog systems). In the protein biocomputing world, all models are 
multilevel and nonlinear exponential in nature. These biocomputing systems are linearized by boundary limited 
frequency, time response and dimensional ranges. The protein model and its correct development is probably the most 
difficult aspect for biocomputing issues. Previous protein models were not dealing with 2 and 3 dimensional models, 
while the current protein models are now faced with high frequency design, due to the emergence of bio-nanodevices. 
These future biocomputing devices will be chemical sensors, fluidic computer systems, optical switches, 
nanoactuators, self-repairing polymorphic computing systems, cognitive processors and biorobotics. 
 

I. Introduction 
Engineering terminology is changing with many new areas appearing. As such was the case a century ago when 
electrical engineering was a course offered in civil engineering, biotechnology and nanotechnology are the leading 
edge new emerging disciplines for bio-inspired electronics and the tools for development of protein logic. The 
temporal and spatial domains of protein logic, as shown in Fig. 1, represents the biological and chemical 
characteristics compared to CMOS, but in the 2 and 3 dimensional protein models, phenomena’s such as  electrical, 
magnetic, mechanical, optical, and thermal properties are included for performance specifications issues. Desired 
specifications at the system level are: sensitivity, measurand range, stability, resolution-accuracy, speed of response, 
temperature variations, and power characteristics. In the early development of this technology, the envisioned 
biocomputing system will contain a digital output stage, wherein multilevel protein signals are converted to logic, and 
classified as a protein logic system. The envisioned protein logic systems will be hybrid in nature, being composed of 
both organic and inorganic components. The biocomputing architecture involves a digital control system that utilizes 
the protein logic system as a cognitive processing device. 
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Figure 1.  Size and Speed Comparisons of Bio-computing Elements to Existing CMOS Digital Technology. 
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Performance specifications requires the protein logic memory system to store an optical input despite various system 
disturbances. Satisfactory information storage with disturbances is associated with a hybrid digital control disturbance 
rejection system evolved around the multilevel protein logic and its various states.  
II. Bio-Memory  
Proteins react to vapor and gas concentrations, so the question becomes: Can they react and store information and can 
they provide a polymorphous memory structure for contextual applications? To answer these questions, several 
biological molecules are under consideration for use in computer polymorphous hardware, but the bacterial protein 
bacteriorhodopsin has generated the most interest. During the past 12 years, parallel-processing devices, with three-
dimensional data storage hardware (Fig. 2) and recently neural networks based on this protein logic, have been built 
by the Air Force Research Laboratory’s Information Directorate. Interest in bacterial-rhodopsin dates back to the early 
1970s, when Walther Stoeckenius of the University of California at San Francisco and Dieter Oesterhelt, now at the 
Max Planck Institute for Biochemistry in Martinsried, discovered that the protein exhibited unusual properties when it 
was exposed to light.  Found in the membrane of Halobacterium salinarium, bacteriorhodopsin enables the bacterium 
to grow when the concentration of oxygen is insufficient to otherwise sustain the organism. When struck by light, the 
protein changes its structure and transports a proton across the membrane, thereby supplying energy to maintain cell 
metabolism. Microfiche films, which are self replicating DNA (gene logic), called Biochrome, are composed of 
bacteriorhodopsin. Both rhodopsin and bacteriorhodopsin are complex proteins that include a light-absorbing 
component known as a chromophore. 

       
Figure 2. BioMemory Polymorphic Technology of Gene and Protein Logic. 

 
The chromophore absorbs energy from light, triggering a complex series of internal motions that result in dramatic 
changes in the structure of the larger protein. These changes alter the protein's optical and electrical characteristics. (In 
protein logic, the resting state ‘0’ is known as bR, and each intermediate in the series is identified by a letter of the 
alphabet, as shown in Fig.2). The various intermediates can be used to represent bits of data. Moreover, the 
intermediates absorb light in different regions of the spectrum.  

The idea of using protein as a material for memory storage is made possible by the fact that proteins exist in 
different conformations, or states, and that in certain proteins these states can be induced by light. Information can be 
stored in an array of protein clusters arranged and suspended within an optically transparent polymer matrix [1, 2, 3]. 
By directing light at specific coordinates of the matrix, specific clusters can be switched from “state 1” to “state 2,” or 
better yet is to say, “bit 0” to “bit 1.”  The Q-state is a viable state to be assigned bit 1, while the ground state bR is 
assigned bit 0. A bit 1 to bit 0 transformation can be achieved only by exposure to high-energy blue light. 
 
III. Pico-second Response Time for Bio-memory  
 
The response time of bR to light is currently known to be in the order of picoseconds, which has been seen with 
femto-second-resolved infrared spectroscopy [4]. The initial isomerization takes place within 0.5 picoseconds, and 
after about 3 more picoseconds the K state is reached.  The transition from K to L is ~1 microsecond, L to M is ~50 
microseconds, M to N is ~1ms, N to O is ~2ms, and O to bR is ~8ms. The relatively slow transition from O back to 
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bR allows time for a second write laser to induce O to P. The total time for the normal photocycle is ~10ms and ~2ms 
to write. 
 

 

Figure 3. Showing the primary (states bR to K, L, M, N, O) and branched (states O to P to Q) photocycles. 

 Extensive research in the development of bR as a memory-storage device has been and is still being done. To 
specify a 3-dimensional coordinate requires two precise laser beams that intersect at the desired coordinate. One laser 
must have capability to focus in two dimensions, while the other laser has the capability to focus in the 3rd dimension. 
The first laser, ~635nm, activates the primary photocycle across a whole row of bR-clusters. The activation of the 
primary photocycle has been coined “paging.” A second laser of ~690nm must be shined ~2ms after the first laser, and 
must be directed down a column which intersects the paged row at the desired coordinate. The desired coordinate’s 
cluster gets hit with the ~690nm light precisely while it is in the O-state and transforms into the P and Q states, 
completing the write process. The size of the bit transformed cluster, also known as a voxel, is determined by the size 
of the paging laser and writing lasers’ intersection. The paged clusters that were not met by a second ~690nm light 
reverts back to ground state bit 0, while nothing happens to the column of ground state clusters exposed to the 
~690nm light. The read process can be achieved based on absorption properties and yield of the O-state and P/Q states 
[3]. The erase process is achieved by exposure to blue light. 
 

 

Figure 4. Showing the write process for a bR memory gel inside a 1x1x3 cm cuvette and an enlarged view of a 
cross-section. See text for details. Note the distinction between a voxel (cluster) and a fragment. 

 
Intensity beams are necessary to transform a cluster above the read threshold. Such high intensity, however, preclude 
potential aspects such as multiplexing. High intensity also limits the precision of writing because the voxel size is not 
small enough. Also described below are speculations of other effects high intensity may have on the memory device’s 
writing performance efficiency: 
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• The photocyclic properties of the memory storage device must be improved before it can compete with current 
commercially available memory storage systems. Current attempts at improving quantum efficiencies2 are 
underway at several institutions in a somewhat collaborative effort.  

• When a cluster of bR is paged and then written to, a significant amount of the bR in that cluster must switch states 
in order to distinguish its bit 1 nature from a nearby unwritten bit 0 cluster. The read process must be able to 
distinguish a bit 0 cluster from a bit 1 cluster based on the different absorption properties of each state (Fig. 3), as 
well as the state change efficiency within each cluster. Using the O-state to read, as described in [1], helps reduce 
read-errors because the O-absorption is further away from P and Q absorption than bR absorption (see Fig. 3).  

 
IV. I/O Bio-computing Architecture 

 
Figure 5.  Overview Conversion of Multi-Dimensional Protein Logic (Layer 1,2 and 3 Stages). 

 
If the protein bR parameters vary, but the system retains acceptable memory characteristics with disturbances, then the 
system is defined as robust. The general envisioned protein robust logic system consists of three stages. In stage one, 
the analog-to-digital (A/D) converter samples the optical protein signal and converts the sampled signal to digits 
within the register used in the protein computer. The polymorphic protein computer (second stage), Fig. 6, processes 
the A/D register by the user defined protein logic algorithms, with the result being placed in the D/A register. Stage 
three, with the neural network, converts the discrete D/A register data to an optical switch matrix and an optical signal.  
 

 
Figure 6. Details of Layer 2 and 3 –Polymorphic Biocomputing. 
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Quantum Efficiency is sometimes interchanged with the term Quantum Yield. 
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Because conventional model-based methods for pattern recognition and decision-making are slow and ineffective, we 
have proposed a polymorphous adaptive strategy for the second stage in which combinations of the basic intelligent 
methodologies including wavelet transforms, genetic algorithms, and threshold logic are used to provide better 
processing capabilities to the neural network within a single system. Each of the sophisticated "intelligent" processing 
techniques, if used alone, possesses certain advantages and disadvantages.  By including all these techniques in the 
polymorphic detection process, one can mix and match them in algorithms, which will be more robust and efficient over a 
wider range of targets than if we restricted ourselves to one technique alone. The concept of polymorphic computing, as 
shown in Fig. 6, refers to hardware modules with superimposed built-in functionality. A processing functional change 
(neural nets, genetic algorithm, and threshold logic) does not require switches, reconfiguration and separate processing 
modules, as in traditional approaches. Instead, the change comes from modifications in the characteristics of circuits 
involved in detection of the protein logic, in response to controls such as light response, multi-inputs, time and 
frequency response, sensitivity, and threshold levels. Biocomputing demonstrates the polymorphic concept and the 
extraction of protein logic by evolution. 
 
V.  Summary 
The bio-computing design approach with  bio/analog/digital integration reflects  multidisplinary prototyping 
algorithms and 3-D structures for mult-dimensional protein logic. Realizing new advances in biocomputing, requires 
design advances in software algorithms equivalent to those in reconfigurable hardware. The design advances involves 
the use of bR protein memory and a polymorphic technology platform, that is adaptable to new biotechnology and 
protein logic. Cross-platform bio/analog/digital architecture for new hardware applications that bridges the gap 
between digital and multivalue logic design is a future design standard that must be addressed if biocomputing is to 
evolve. The need to bridge the gap between electronic devices and  proteins with reconfigurable, self-healing system 
design introduces the concept of polymorphic computing. Once the polymorphic architectures are developed, neural 
networks can be used to control the polymorphic response, whereby achieving a robust and intelligent biocomputing 
system. 
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Electronic Nose Inhibition in a Spiking Neural Network for Noise Cancellation 
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ABSTRACT 
Spiking neural networks can be implemented in hardware by using adders and comparators, making them well suited 
for real-time information extraction applications. An olfaction detection spiking neural network that detects binary 
odor patterns is analyzed and implemented. Detection is prone to false positive errors when multiple odors are 
simultaneously active. This paper presents a new method for inhibiting spiking neural networks by modulating a 
detection threshold. Interference noise from active odors is measured by a single inhibitory neuron.  The inhibition 
neuron changes the detection threshold to cancel interference noise without affecting false-negative detection error.  A 
digital implementation of the inhibition is simulated. Comparative results prove that threshold modulation reduces 
false-positive detection error in high noise scenarios where fifteen odors are active simultaneously. 
 
I. Introduction 
 
Bioinformatics classification problems are not strictly limited to gene analysis problems and also have application to 
models of biological sensor systems. This paper presents a system for classifying odorant patterns from an idealized 
electronic nose using biologically inspired spiking neural networks with a novel form of inhibition. After nearly a 
decade of research, pattern classification techniques for the electronic nose have created practical results [3,5,6,7,8]. 
Most of these solutions use computationally intense classification techniques such as principle component analysis, 
fuzzy logic, and neural networks. Here, we consider a simple spiking neural network in a scenario where several odors 
are present simultaneously, in addition to cross-contamination noise. 
 
An objective of the electronic nose is a portable system with a very large odor memory that can be used in outdoor 
environments for real-time odor detection, learning, and tracking.  The system we have designed has two major design 
constraints. First, our goal is a system-on-a-chip for real-time odor classification in a system with 1024 inputs, so we 
have avoided multiplication operations and created a classification system that uses only adders, comparators, and a 
single, small look-up table. Second, we seek to design a detection/classification system that can be expanded on a 
parallel data bus for real-time, simultaneous monitoring of several thousand odors. 
 
II. A Model of Electronic Olfaction 
 
The ideal electronic olfactory system may be modelled as an array of odorant sensors.  In this model, there are N = 
1023 unique odorant sensors. Each odorant sensor responds to a unique chemical composition. Each odorant sensor 
produces a binary output, and is considered 'off' until a threshold concentration level of chemical vapor turns it 'on'. 
Unique odors stimulate the odorant sensor array with a unique binary pattern.  This model of olfaction resembles the 
biological model in rat brains, where odor receptor cells correspond to odorant sensors [2]. 
 
Our simulator models an odor as a random combination of n total odorant sensors in the sensor array. Binary inputs 
from the odor array are sampled with a rate defined as S = 15 Hz, compatible with mammalian respiratory rates. 
 
The binary outputs from the odor sensor array must be converted to spike trains that are compatible with inputs to the 
spiking neural network. Spike trains have an average spike-per-second rate defined by v. When the odorant sensor is 
in the 'off' state, spikes are input to the spiking neural network with a rate of voff. When the odorant sensor is in the 'on' 
state, the input has a spike rate of von. This idealized representation of the electronic noise may be fairly criticized for 
oversimplifying the outputs of chemical sensors.  However, the model is sufficiently complicated to allow us to study 
the effects of odor cross-contamination from an array of over 1000 sensors. 



 
III. Odor Detection Theory 
 
A. The Spiking Neuron for Average Spike Rate 
 
The detection cell is a spiking neuron, which, in this system, is a very simplified approximation to an integrate and fire 
Neuron[4]. 
 
Spikes from the odorant sensor array serve as inputs to the neuron. When a spike is received by one of the neuron's 
synapses, an internal neuron counter, V, is incremented.  When V reaches a neuron threshold defined by θ v , the 
neuron emits a spike and  V is reset to 0. 
 

 
 
Now, suppose that the neuron has c synapses.  If the ith synaptic input has a spike rate of vi, then the average output 
spike rate of the neuron, voutput is 
 

                 
 
Equation 2 shows that  voutput is the average of  vi in the special case when the neuron threshold equals the number of 
synaptic inputs, θ v = c. 
 
B. The Spiking Neuron for Hamming Distance 
 
Define ε  as the percentage of input synapses that are 'on'. ε  is the fraction of pre-synaptic inputs that are spiking 
with rate von. The following equations apply when θ v = c: 
 

              
Therefore, the output spike rate of the neuron, voutput, is directly proportional to the fraction of pre-synaptic inputs that 
are 'on', ε .  Hence, a neuron may be used to detect an odor by simply connecting the neuron's synaptic inputs to the 
unique odorant sensor combination stimulated by the odor. 
 
C. Detection Threshold 
 
To build tolerance in the system with a noisy environment and multiple odors, a minimum threshold value for 
detection,ε detect, is required. For example, if ε detect= .9, then an odor will be detected when 90% of its odorant sensors 
are active.  The corresponding minimum output spike rate for detection is defined as vdetect. 
 

               
 
Thus far, the theory has focused on average spike rates, v. For our purposes it is more expedient to consider the period 
between subsequent spikes, defined as τ . 
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Likewise, ε  is a function of τ . 
 

 
Therefore,  τ may be used to estimate ε . 
 
IV. Noise Inhibition 
 
A. Noise 
 
The olfaction system is seldom presented with a single odor per sniff. For example, at country fair, a single sniff of the 
open air simultaneously presents an assortment of odors ranging from the delightful smell of roasting corn to the 
smells of animals. Somehow, the olfaction system discriminates individual odors with precision.  Because odorant 
sensors are not unique per individual odor, any number of odors might activate a particular odorant sensor.  Our 
simulation models this effect by presenting p odors simultaneously during each simulated sniff. 
 
Additionally, the simulator models salt and pepper noise, which is defined by η bg, a percentage of odorant sensors 
randomly stimulated, and η bl, a percentage of odorant sensors randomly blanked. 
 
B. Noise Cancellation by Inhibition 
 
To understand the effect of noise on equation 8, we decompose ε  into probability based components ε noise and ε odor. 
Here, ε odor is defined as the proportion of inputs that are not stimulated by noise, and ε noise is the proportion of inputs 
that are stimulated by noise. 
 

 
 
 
Next, equation 5 is updated by equation 9. 
 

((1100))  
 
 
Note that ε noise is a system-wide phenomena, while the component of ε odor is local to the synapses connected to the 
neuron.  Because ε noise is system wide, it may be estimated directly from equation 8 using a single inhibitory neuron 
with c=N synapses connected to every odorant sensor in the system. 
 
From equation 4, the output spike rate of this inhibitory neuron, vinh, is given when c=N is large. 
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Our goal is to cancel the effects of ε noise in the detection neurons, which is generally accomplished in biological 
systems by inhibitory feedback. Typically, inhibitory neurons emit spikes that decrease V in the detection neuron.  A 
similar effect can be obtained by increasing θ v.  The approach we take here is to modulate τ detect. This technique is 
advantageous, because negative numbers for V will not be possible. 
 
First, vdetect is solved as a function of vinh using equations 10 and 12. 
 

 
 
 
Next, the spike rate vinh is converted to a time period measurement between spikes, τ inh. 
 

 
 
 
Finally, recognizing that τ detect is the inverse of vdetect, equation 14 becomes 
 

 
 
 
Therefore, equation 15 shows that the inhibitory neuron can be used to modulate τ detect to cancel the system wide 
effects of ε noise, thereby allowing the neuron to respond to the local effect of ε odor. 
 
V. The Chip Design 
 
The network described above was implemented in Verilog for an FPGA (Field Programmable Gate Array) and then 
synthesized into an ASIC (Application Specific Integrated Circuit) design. Details of the circuit are outside the scope 
of this paper [1], although some details regarding detection and inhibition are discussed briefly. 
 

 
Figure 1. Circuit Block Diagram (Spikes are posted on the spike bus by odorant sensors as 10 bit addresses. The 
inhibition neuron monitors spikes and calculates τ detect based on ε noise.  Neurons listen to spikes on the spike bus in 
parallel and measure the period between spikes, τ ). 
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A. Spikes 
 
Spikes are communicated between the odorant sensor inputs and the detection neurons by posting the address of the 
input on a synchronous spike-bus operating at frequency fsb. The selection of spike rate effects detection speed, 
detection precision, and congestion on the spike bus.  In our design, we selected voff = 0 and von = 1, and fsb = 2 kHz 
 
B. Detection Neurons 
 
The detection neuron includes a counter, Vd, and comparator to signal when Vd =θ v.  = c.  Vd increases each time a 
spike is received. As shown in equation 1, Vd is reset to 0 when Vd reaches c, whereupon a decision is made about 
whether the odor is active or inactive. 
 
The detection decision (deciding if the odor is active or not) uses τ detect, which is compared to τ , the time period for 
Vd to increment from 0 to c.  A digital implementation of this detection scheme requires another counter, χ τ  that 
increments with frequency fn, to measure τ .  The neuron will always be considered off (or inactive) once  > τ detect, so 
χ τ  will never need to increment beyond a threshold count, θ detect.  We define θ detect as τ detect converted to the 
counter units of χ τ .  As discussed in the prior section, τ detect (and hence θ detect) will be dynamically adjusted by 
the inhibition neuron. 
 
The bit width of χ τ  will depend on fn n. We chose f  = 200 for a relatively precise measurement of τ while limiting 
χ τ  to 8 bits. 
 
C. Inhibition 
 
The inhibition neuron modulates τ detect for the entire network of neurons, in response to noise.  Vinh of the inhibit 
neuron increments whenever a spike is received by any of the 1023 inputs, and θ v = c = N = 1023. In this 
configuration, τ inh is directly proportional to ε noise, the equation below shows how τ detect may be modulated as a 
function of τ inh.. 
 

 
 
 
 
To measure τ inh, we define a counter χ

inh that will increment at frequency fi to measure the time between successive 
resets of Vinh.  χ

inh needs to be large because χ
inh tends to infinity as ε noise  tends to 0.  Fortunately, in a low noise 

environment inhibition is not necessary, so we can limit χ
inh to a reasonable bit count. In our final design, we choose 

f  = inh 512sbf  = 3.9 Hz.  This has the effect of holding χ
inh to 8 bits. The simulation below also compares a more 

precise implementation where χ
inh is 12 bits. 

 
VI. Simulation and Experiment 
 
A. Noise Scenarios 
 
The spiking neural network was tested using three major environment scenarios to represent a broad spectrum of noise 
activity as shown in Table I. 
 
1) Low Noise: In the low noise scenario, all forms of noise are present. However, the noise amount is insignificant so 
that there should be little if any effect on network performance. 
2) Medium Noise: The medium noise scenario includes enough noise to tax the capabilities of the network, but we still 
expect good performance. 
3) High Noise: The high noise scenario is at the edge of the network's capability. In this scenario, odor stimulus is 
comparable to noise stimulus. Perfect network response is not expected, but a graceful and robust degradation of 
network response should be apparent. 
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B. Chip Configurations 
 
Algorithms were tested using various chip design configurations summarized in Table II. Configurations ending in the 
number 8 have ε detect = .8. Configurations ending in the number 9 have ε detect = .9.  For configurations D08 and D09, 
inhibition was disabled. Configurations D18 and D19 used 8 bit counters for χ

inh and finh = 200. Configurations D28 
and D29 used 12 bit counters for χ

inh and finh = 2000. 
 
 
 
C. Testing Procedure 
 
A simulator written in C# allowed us to test digital chip configurations with timing identical to Verilog simulation 
without modifying HDL code.   In a typical detection test, 300 odors were randomly generated with n = 100.  Next, 
300 neurons were generated to detect these 300 odors.  For example, synaptic connections of neuron 1 were loaded to 
detect odorant sensors stimulated by odor 1. 
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Figure 2. The odor simulator randomly generates binary odor patterns and trains simulated neurons to detect the patterns. 
Odors and system noise are then generated to test detection algorithms.  Simulator logic is identical to FPGA digital logic 
circuitry. 
 
 
During the test, odors were randomly cycled in and out of the test environment ensuring that exactly p odors were 
present. Odors were activated for a random period of time having a normal distribution with a mean of 3 seconds.  As 
odors became active, neurons assigned to detect them responded, and logic in the simulator recorded detection metrics 
for these neurons.  At the end of each test, the metrics of each neuron were recorded in a log file. Every configuration 
was tested in every noise scenario for 500 seconds per test.  Each test was repeated 5 times. 
 
VII. Results and Discussion 
 
A. Results 
 Figures 3 to 6  summarize the detection error sorted by noise scenario (H=high noise, L=low noise, and M= medium 
noise).  Chip configuration codes are listed in Table II. 
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Figure 3. Detection Error: Detection error is a measure of false-negative response from neurons, and measures the total time when a 
neuron does not detect an active odor.  The detection error is measured by average number of seconds of error per detection neuron.  
Because the total number of seconds each odor was present differs for each noise scenario, direct comparisons between H, L, and 
M are not helpful. However, comparisons within each noise scenario show that inhibition increases detection error.  
 

 
Figure 4. Silence Error in Low and Medium Noise: The silence error is the average number of seconds when a detection neuron 
falsely detects an odor that is not active. Silence error is a measure of false-positive detections. Again, direct comparisons between 
H, L, and M are not helpful because odors were present for different lengths of time in each scenario. Inhibition reduces the effect 
of false-positive detections, although the effect is least pronounced in a low noise scenario. 
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Figure 5. Silence Error in High Noise: False-positive detections are significantly reduced by inhibition in the high noise scenario.  
Note: The D08 chip configuration without inhibition has an error exceeding 200 seconds and was omitted because it dwarfed the 
other entries. 
 

 
Figure 6. Silence Error Summary: This view emphasizes the D08 chip configuration's false-positive error in the high noise scenario.  
 
 
 
B. Discussion 
 
In the low noise scenario, there is no substantial difference between configurations that implement inhibition and 
those without inhibition.  However, in high noise scenarios, false-positive error increases dramatically, rendering the 
system non-functional for the D08 configuration (without inhibition). Conversely, configurations implementing 
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inhibition cancelled the effect of system-wide noise to allow individual odors to be identified despite interference from 
other odors simultaneously active in the system. 
 
The detection error illustrates the downside to this inhibition scheme, because configurations implementing inhibition 
are more prone to false-negative errors.  However, the trade-off is acceptable because false-positive error is least 
desirable for odor detection.  The results show a system that degrades gracefully in the presence of noise by simply 
taking longer to detect odors.  Indeed, the inhibition causes the detection to simply become more conservative in a 
high noise scenario, while the network without inhibition becomes unusable. 
 
Finally, there is noticeable, but not critical, difference between results from the 8 bit and the 12 bit counter for χ

inh . 
Also, differences in result when ε detect is .8 or .9 are most significant when inhibition is not present in a high noise 
scenario. 
 
VIII. Conclusion 
 
In conclusion, we have presented a new technique for modulating inhibition for a spiking neural network.  This 
method allows the network to detect individual odors when several odors are simultaneously present.  The results 
show that configurations without inhibition produce abnormally high false-positive error, while the performance of 
chips with inhibition remain robust and degrade gracefully in the presence of noise. 
 
Furthermore, this inhibition technique is well suited for digital logic implementation because a single inhibition 
neuron modulates the detection threshold,τ detect , for the entire network.  All other detection neurons may be 
implemented in simple circuits based on counters and comparators. 
 
Finally, this paper focuses on an electronic nose application, but this approach to binary pattern sorting has potential 
use in other bioinformatic applications that require parallel sorting of competing/overlapping binary patterns. 
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